sp(14), type \(C^{1}_7\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.

Page generated by the calculator project.

Lie algebra type: C^{1}_7.
Weyl group size: 645120.
A drawing of the root system in its corresponding Coxeter plane. Computations were carried out as explained by John Stembridge.
The darker red dots can be dragged with the mouse to rotate the picture.
The grey lines are the edges of the Weyl chamber.
Canvas not supported


The root system has 98 elements.
Simple basis coordinatesEpsilon coordinatesReflection w.r.t. root
(-2, -2, -2, -2, -2, -2, -1)-2e_{1}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\)
(-1, -2, -2, -2, -2, -2, -1)-e_{1}-e_{2}\(s_{2}s_{1}s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(0, -2, -2, -2, -2, -2, -1)-2e_{2}\(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(-1, -1, -2, -2, -2, -2, -1)-e_{1}-e_{3}\(s_{1}s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(0, -1, -2, -2, -2, -2, -1)-e_{2}-e_{3}\(s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(-1, -1, -1, -2, -2, -2, -1)-e_{1}-e_{4}\(s_{1}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}\)
(0, 0, -2, -2, -2, -2, -1)-2e_{3}\(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(0, -1, -1, -2, -2, -2, -1)-e_{2}-e_{4}\(s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}s_{4}\)
(-1, -1, -1, -1, -2, -2, -1)-e_{1}-e_{5}\(s_{1}s_{2}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}\)
(0, 0, -1, -2, -2, -2, -1)-e_{3}-e_{4}\(s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}s_{5}s_{4}\)
(0, -1, -1, -1, -2, -2, -1)-e_{2}-e_{5}\(s_{2}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}\)
(-1, -1, -1, -1, -1, -2, -1)-e_{1}-e_{6}\(s_{1}s_{2}s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}\)
(0, 0, 0, -2, -2, -2, -1)-2e_{4}\(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\)
(0, 0, -1, -1, -2, -2, -1)-e_{3}-e_{5}\(s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}s_{5}\)
(0, -1, -1, -1, -1, -2, -1)-e_{2}-e_{6}\(s_{2}s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}\)
(-1, -1, -1, -1, -1, -1, -1)-e_{1}-e_{7}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}\)
(0, 0, 0, -1, -2, -2, -1)-e_{4}-e_{5}\(s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}s_{6}s_{5}\)
(0, 0, -1, -1, -1, -2, -1)-e_{3}-e_{6}\(s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}\)
(0, -1, -1, -1, -1, -1, -1)-e_{2}-e_{7}\(s_{2}s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}\)
(-1, -1, -1, -1, -1, -1, 0)-e_{1}+e_{7}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\)
(0, 0, 0, 0, -2, -2, -1)-2e_{5}\(s_{5}s_{6}s_{7}s_{6}s_{5}\)
(0, 0, 0, -1, -1, -2, -1)-e_{4}-e_{6}\(s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}s_{6}\)
(0, 0, -1, -1, -1, -1, -1)-e_{3}-e_{7}\(s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}\)
(0, -1, -1, -1, -1, -1, 0)-e_{2}+e_{7}\(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(-1, -1, -1, -1, -1, 0, 0)-e_{1}+e_{6}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\)
(0, 0, 0, 0, -1, -2, -1)-e_{5}-e_{6}\(s_{6}s_{5}s_{7}s_{6}s_{5}s_{7}s_{6}\)
(0, 0, 0, -1, -1, -1, -1)-e_{4}-e_{7}\(s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}\)
(0, 0, -1, -1, -1, -1, 0)-e_{3}+e_{7}\(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\)
(0, -1, -1, -1, -1, 0, 0)-e_{2}+e_{6}\(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\)
(-1, -1, -1, -1, 0, 0, 0)-e_{1}+e_{5}\(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\)
(0, 0, 0, 0, 0, -2, -1)-2e_{6}\(s_{6}s_{7}s_{6}\)
(0, 0, 0, 0, -1, -1, -1)-e_{5}-e_{7}\(s_{5}s_{7}s_{6}s_{5}s_{7}\)
(0, 0, 0, -1, -1, -1, 0)-e_{4}+e_{7}\(s_{4}s_{5}s_{6}s_{5}s_{4}\)
(0, 0, -1, -1, -1, 0, 0)-e_{3}+e_{6}\(s_{3}s_{4}s_{5}s_{4}s_{3}\)
(0, -1, -1, -1, 0, 0, 0)-e_{2}+e_{5}\(s_{2}s_{3}s_{4}s_{3}s_{2}\)
(-1, -1, -1, 0, 0, 0, 0)-e_{1}+e_{4}\(s_{1}s_{2}s_{3}s_{2}s_{1}\)
(0, 0, 0, 0, 0, -1, -1)-e_{6}-e_{7}\(s_{7}s_{6}s_{7}\)
(0, 0, 0, 0, -1, -1, 0)-e_{5}+e_{7}\(s_{5}s_{6}s_{5}\)
(0, 0, 0, -1, -1, 0, 0)-e_{4}+e_{6}\(s_{4}s_{5}s_{4}\)
(0, 0, -1, -1, 0, 0, 0)-e_{3}+e_{5}\(s_{3}s_{4}s_{3}\)
(0, -1, -1, 0, 0, 0, 0)-e_{2}+e_{4}\(s_{2}s_{3}s_{2}\)
(-1, -1, 0, 0, 0, 0, 0)-e_{1}+e_{3}\(s_{1}s_{2}s_{1}\)
(0, 0, 0, 0, 0, 0, -1)-2e_{7}\(s_{7}\)
(0, 0, 0, 0, 0, -1, 0)-e_{6}+e_{7}\(s_{6}\)
(0, 0, 0, 0, -1, 0, 0)-e_{5}+e_{6}\(s_{5}\)
(0, 0, 0, -1, 0, 0, 0)-e_{4}+e_{5}\(s_{4}\)
(0, 0, -1, 0, 0, 0, 0)-e_{3}+e_{4}\(s_{3}\)
(0, -1, 0, 0, 0, 0, 0)-e_{2}+e_{3}\(s_{2}\)
(-1, 0, 0, 0, 0, 0, 0)-e_{1}+e_{2}\(s_{1}\)
(1, 0, 0, 0, 0, 0, 0)e_{1}-e_{2}\(s_{1}\)
(0, 1, 0, 0, 0, 0, 0)e_{2}-e_{3}\(s_{2}\)
(0, 0, 1, 0, 0, 0, 0)e_{3}-e_{4}\(s_{3}\)
(0, 0, 0, 1, 0, 0, 0)e_{4}-e_{5}\(s_{4}\)
(0, 0, 0, 0, 1, 0, 0)e_{5}-e_{6}\(s_{5}\)
(0, 0, 0, 0, 0, 1, 0)e_{6}-e_{7}\(s_{6}\)
(0, 0, 0, 0, 0, 0, 1)2e_{7}\(s_{7}\)
(1, 1, 0, 0, 0, 0, 0)e_{1}-e_{3}\(s_{1}s_{2}s_{1}\)
(0, 1, 1, 0, 0, 0, 0)e_{2}-e_{4}\(s_{2}s_{3}s_{2}\)
(0, 0, 1, 1, 0, 0, 0)e_{3}-e_{5}\(s_{3}s_{4}s_{3}\)
(0, 0, 0, 1, 1, 0, 0)e_{4}-e_{6}\(s_{4}s_{5}s_{4}\)
(0, 0, 0, 0, 1, 1, 0)e_{5}-e_{7}\(s_{5}s_{6}s_{5}\)
(0, 0, 0, 0, 0, 1, 1)e_{6}+e_{7}\(s_{7}s_{6}s_{7}\)
(1, 1, 1, 0, 0, 0, 0)e_{1}-e_{4}\(s_{1}s_{2}s_{3}s_{2}s_{1}\)
(0, 1, 1, 1, 0, 0, 0)e_{2}-e_{5}\(s_{2}s_{3}s_{4}s_{3}s_{2}\)
(0, 0, 1, 1, 1, 0, 0)e_{3}-e_{6}\(s_{3}s_{4}s_{5}s_{4}s_{3}\)
(0, 0, 0, 1, 1, 1, 0)e_{4}-e_{7}\(s_{4}s_{5}s_{6}s_{5}s_{4}\)
(0, 0, 0, 0, 1, 1, 1)e_{5}+e_{7}\(s_{5}s_{7}s_{6}s_{5}s_{7}\)
(0, 0, 0, 0, 0, 2, 1)2e_{6}\(s_{6}s_{7}s_{6}\)
(1, 1, 1, 1, 0, 0, 0)e_{1}-e_{5}\(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\)
(0, 1, 1, 1, 1, 0, 0)e_{2}-e_{6}\(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\)
(0, 0, 1, 1, 1, 1, 0)e_{3}-e_{7}\(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\)
(0, 0, 0, 1, 1, 1, 1)e_{4}+e_{7}\(s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}\)
(0, 0, 0, 0, 1, 2, 1)e_{5}+e_{6}\(s_{6}s_{5}s_{7}s_{6}s_{5}s_{7}s_{6}\)
(1, 1, 1, 1, 1, 0, 0)e_{1}-e_{6}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\)
(0, 1, 1, 1, 1, 1, 0)e_{2}-e_{7}\(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(0, 0, 1, 1, 1, 1, 1)e_{3}+e_{7}\(s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}\)
(0, 0, 0, 1, 1, 2, 1)e_{4}+e_{6}\(s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}s_{6}\)
(0, 0, 0, 0, 2, 2, 1)2e_{5}\(s_{5}s_{6}s_{7}s_{6}s_{5}\)
(1, 1, 1, 1, 1, 1, 0)e_{1}-e_{7}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\)
(0, 1, 1, 1, 1, 1, 1)e_{2}+e_{7}\(s_{2}s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}\)
(0, 0, 1, 1, 1, 2, 1)e_{3}+e_{6}\(s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}\)
(0, 0, 0, 1, 2, 2, 1)e_{4}+e_{5}\(s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{7}s_{6}s_{5}\)
(1, 1, 1, 1, 1, 1, 1)e_{1}+e_{7}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}\)
(0, 1, 1, 1, 1, 2, 1)e_{2}+e_{6}\(s_{2}s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}\)
(0, 0, 1, 1, 2, 2, 1)e_{3}+e_{5}\(s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}s_{5}\)
(0, 0, 0, 2, 2, 2, 1)2e_{4}\(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\)
(1, 1, 1, 1, 1, 2, 1)e_{1}+e_{6}\(s_{1}s_{2}s_{3}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}\)
(0, 1, 1, 1, 2, 2, 1)e_{2}+e_{5}\(s_{2}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}\)
(0, 0, 1, 2, 2, 2, 1)e_{3}+e_{4}\(s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{7}s_{6}s_{5}s_{4}\)
(1, 1, 1, 1, 2, 2, 1)e_{1}+e_{5}\(s_{1}s_{2}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}\)
(0, 1, 1, 2, 2, 2, 1)e_{2}+e_{4}\(s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}s_{4}\)
(0, 0, 2, 2, 2, 2, 1)2e_{3}\(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(1, 1, 1, 2, 2, 2, 1)e_{1}+e_{4}\(s_{1}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}\)
(0, 1, 2, 2, 2, 2, 1)e_{2}+e_{3}\(s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(1, 1, 2, 2, 2, 2, 1)e_{1}+e_{3}\(s_{1}s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}s_{3}\)
(0, 2, 2, 2, 2, 2, 1)2e_{2}\(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(1, 2, 2, 2, 2, 2, 1)e_{1}+e_{2}\(s_{2}s_{1}s_{3}s_{2}s_{4}s_{3}s_{5}s_{4}s_{6}s_{5}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\)
(2, 2, 2, 2, 2, 2, 1)2e_{1}\(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\)
Comma delimited list of roots: (-2, -2, -2, -2, -2, -2, -1), (-1, -2, -2, -2, -2, -2, -1), (0, -2, -2, -2, -2, -2, -1), (-1, -1, -2, -2, -2, -2, -1), (0, -1, -2, -2, -2, -2, -1), (-1, -1, -1, -2, -2, -2, -1), (0, 0, -2, -2, -2, -2, -1), (0, -1, -1, -2, -2, -2, -1), (-1, -1, -1, -1, -2, -2, -1), (0, 0, -1, -2, -2, -2, -1), (0, -1, -1, -1, -2, -2, -1), (-1, -1, -1, -1, -1, -2, -1), (0, 0, 0, -2, -2, -2, -1), (0, 0, -1, -1, -2, -2, -1), (0, -1, -1, -1, -1, -2, -1), (-1, -1, -1, -1, -1, -1, -1), (0, 0, 0, -1, -2, -2, -1), (0, 0, -1, -1, -1, -2, -1), (0, -1, -1, -1, -1, -1, -1), (-1, -1, -1, -1, -1, -1, 0), (0, 0, 0, 0, -2, -2, -1), (0, 0, 0, -1, -1, -2, -1), (0, 0, -1, -1, -1, -1, -1), (0, -1, -1, -1, -1, -1, 0), (-1, -1, -1, -1, -1, 0, 0), (0, 0, 0, 0, -1, -2, -1), (0, 0, 0, -1, -1, -1, -1), (0, 0, -1, -1, -1, -1, 0), (0, -1, -1, -1, -1, 0, 0), (-1, -1, -1, -1, 0, 0, 0), (0, 0, 0, 0, 0, -2, -1), (0, 0, 0, 0, -1, -1, -1), (0, 0, 0, -1, -1, -1, 0), (0, 0, -1, -1, -1, 0, 0), (0, -1, -1, -1, 0, 0, 0), (-1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 0, -1, -1), (0, 0, 0, 0, -1, -1, 0), (0, 0, 0, -1, -1, 0, 0), (0, 0, -1, -1, 0, 0, 0), (0, -1, -1, 0, 0, 0, 0), (-1, -1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 0, -1, 0), (0, 0, 0, 0, -1, 0, 0), (0, 0, 0, -1, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0), (0, -1, 0, 0, 0, 0, 0), (-1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0), (0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 0, 2, 1), (1, 1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1), (0, 0, 0, 0, 1, 2, 1), (1, 1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 1, 1, 0), (0, 0, 1, 1, 1, 1, 1), (0, 0, 0, 1, 1, 2, 1), (0, 0, 0, 0, 2, 2, 1), (1, 1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1, 1), (0, 0, 1, 1, 1, 2, 1), (0, 0, 0, 1, 2, 2, 1), (1, 1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 2, 1), (0, 0, 1, 1, 2, 2, 1), (0, 0, 0, 2, 2, 2, 1), (1, 1, 1, 1, 1, 2, 1), (0, 1, 1, 1, 2, 2, 1), (0, 0, 1, 2, 2, 2, 1), (1, 1, 1, 1, 2, 2, 1), (0, 1, 1, 2, 2, 2, 1), (0, 0, 2, 2, 2, 2, 1), (1, 1, 1, 2, 2, 2, 1), (0, 1, 2, 2, 2, 2, 1), (1, 1, 2, 2, 2, 2, 1), (0, 2, 2, 2, 2, 2, 1), (1, 2, 2, 2, 2, 2, 1), (2, 2, 2, 2, 2, 2, 1) The resulting Lie bracket pairing table follows.
Type C^{1}_7.The letter \(\displaystyle h\) stands for elements of the Cartan subalgebra,
the letter \(\displaystyle g\) stands for the Chevalley (root space) generators of non-zero weight.
The generator \(\displaystyle h_i\) is the element of the Cartan subalgebra dual to the
i^th simple root, that is, \(\displaystyle [h_i, g] =\langle \alpha_i , \gamma\rangle g\),
where g is a Chevalley generator, \(\displaystyle \gamma\) is its weight, and
\(\displaystyle \alpha_i\) is the i^th simple root.
The Lie bracket table is too large to be rendered in LaTeX, displaying in html format instead.
roots simple coords epsilon coordinates[,]g_{-49}g_{-48}g_{-47}g_{-46}g_{-45}g_{-44}g_{-43}g_{-42}g_{-41}g_{-40}g_{-39}g_{-38}g_{-37}g_{-36}g_{-35}g_{-34}g_{-33}g_{-32}g_{-31}g_{-30}g_{-29}g_{-28}g_{-27}g_{-26}g_{-25}g_{-24}g_{-23}g_{-22}g_{-21}g_{-20}g_{-19}g_{-18}g_{-17}g_{-16}g_{-15}g_{-14}g_{-13}g_{-12}g_{-11}g_{-10}g_{-9}g_{-8}g_{-7}g_{-6}g_{-5}g_{-4}g_{-3}g_{-2}g_{-1}h_{1}h_{2}h_{3}h_{4}h_{5}h_{6}h_{7}g_{1}g_{2}g_{3}g_{4}g_{5}g_{6}g_{7}g_{8}g_{9}g_{10}g_{11}g_{12}g_{13}g_{14}g_{15}g_{16}g_{17}g_{18}g_{19}g_{20}g_{21}g_{22}g_{23}g_{24}g_{25}g_{26}g_{27}g_{28}g_{29}g_{30}g_{31}g_{32}g_{33}g_{34}g_{35}g_{36}g_{37}g_{38}g_{39}g_{40}g_{41}g_{42}g_{43}g_{44}g_{45}g_{46}g_{47}g_{48}g_{49}
(-2, -2, -2, -2, -2, -2, -1)-2e_{1}g_{-49}0000000000000000000000000000000000000000000000000g_{-49}000000g_{-48}000000g_{-46}00000g_{-44}00000g_{-41}0000g_{-38}0000g_{-34}000-g_{-30}000-g_{-25}00-g_{-20}00-g_{-14}0-g_{-8}0-g_{-1}-h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}
(-1, -2, -2, -2, -2, -2, -1)-e_{1}-e_{2}g_{-48}0000000000000000000000000000000000000000000000002g_{-49}01/2g_{-48}000002g_{-47}g_{-46}00000g_{-45}g_{-44}0000g_{-42}g_{-41}0000g_{-39}g_{-38}000g_{-35}g_{-34}000g_{-31}-g_{-30}00-g_{-26}-g_{-25}00-g_{-21}-g_{-20}0-g_{-15}-g_{-14}0-g_{-9}-g_{-8}-g_{-2}-g_{-1}-2h_{7}-4h_{6}-4h_{5}-4h_{4}-4h_{3}-4h_{2}-2h_{1}-g_{1}
(0, -2, -2, -2, -2, -2, -1)-2e_{2}g_{-47}000000000000000000000000000000000000000000000000g_{-48}-g_{-47}g_{-47}000000g_{-45}000000g_{-42}00000g_{-39}00000g_{-35}0000g_{-31}0000-g_{-26}000-g_{-21}000-g_{-15}00-g_{-9}00-g_{-2}0-h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-g_{1}0
(-1, -1, -2, -2, -2, -2, -1)-e_{1}-e_{3}g_{-46}000000000000000000000000000000000000000002g_{-49}00000g_{-48}01/2g_{-46}-1/2g_{-46}1/2g_{-46}0000g_{-45}0g_{-44}00002g_{-43}0g_{-41}000g_{-40}0g_{-38}000g_{-36}0g_{-34}00g_{-32}0-g_{-30}00g_{-27}0-g_{-25}0-g_{-22}0-g_{-20}0-g_{-16}0-g_{-14}-g_{-10}0-g_{-8}-g_{-3}-g_{-1}-2h_{7}-4h_{6}-4h_{5}-4h_{4}-4h_{3}-2h_{2}-2h_{1}0-g_{2}-g_{8}
(0, -1, -2, -2, -2, -2, -1)-e_{2}-e_{3}g_{-45}00000000000000000000000000000000000000000g_{-48}000002g_{-47}g_{-46}-1/2g_{-45}01/2g_{-45}000002g_{-43}g_{-42}00000g_{-40}g_{-39}0000g_{-36}g_{-35}0000g_{-32}g_{-31}000g_{-27}-g_{-26}000-g_{-22}-g_{-21}00-g_{-16}-g_{-15}00-g_{-10}-g_{-9}0-g_{-3}-g_{-2}0-2h_{7}-4h_{6}-4h_{5}-4h_{4}-4h_{3}-2h_{2}-g_{1}-g_{2}-g_{8}0
(-1, -1, -1, -2, -2, -2, -1)-e_{1}-e_{4}g_{-44}000000000000000000000000000000000002g_{-49}0000g_{-48}00000g_{-46}001/2g_{-44}0-1/2g_{-44}1/2g_{-44}000g_{-42}00g_{-41}000g_{-40}00g_{-38}002g_{-37}00g_{-34}00g_{-33}00-g_{-30}0g_{-28}00-g_{-25}0g_{-23}00-g_{-20}-g_{-17}00-g_{-14}-g_{-11}0-g_{-8}-g_{-4}-g_{-1}0-2h_{7}-4h_{6}-4h_{5}-4h_{4}-2h_{3}-2h_{2}-2h_{1}0-g_{3}0-g_{9}-g_{14}
(0, 0, -2, -2, -2, -2, -1)-2e_{3}g_{-43}00000000000000000000000000000000000000000g_{-46}00000g_{-45}00-g_{-43}g_{-43}000000g_{-40}000000g_{-36}00000g_{-32}00000g_{-27}0000-g_{-22}0000-g_{-16}000-g_{-10}000-g_{-3}00-h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}0-g_{2}-g_{8}000
(0, -1, -1, -2, -2, -2, -1)-e_{2}-e_{4}g_{-42}00000000000000000000000000000000000g_{-48}00002g_{-47}00000g_{-45}0g_{-44}-1/2g_{-42}1/2g_{-42}-1/2g_{-42}1/2g_{-42}0000g_{-40}0g_{-39}00002g_{-37}0g_{-35}000g_{-33}0g_{-31}000g_{-28}0-g_{-26}00g_{-23}0-g_{-21}00-g_{-17}0-g_{-15}0-g_{-11}0-g_{-9}0-g_{-4}-g_{-2}0-2h_{7}-4h_{6}-4h_{5}-4h_{4}-2h_{3}-2h_{2}0-g_{1}-g_{3}0-g_{9}-g_{14}0
(-1, -1, -1, -1, -2, -2, -1)-e_{1}-e_{5}g_{-41}000000000000000000000000000002g_{-49}0000g_{-48}0000g_{-46}00000g_{-44}0001/2g_{-41}00-1/2g_{-41}1/2g_{-41}00g_{-39}000g_{-38}00g_{-36}000g_{-34}0g_{-33}000-g_{-30}02g_{-29}000-g_{-25}g_{-24}000-g_{-20}g_{-18}00-g_{-14}-g_{-12}0-g_{-8}0-g_{-5}-g_{-1}0-2h_{7}-4h_{6}-4h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}00-g_{4}0-g_{10}0-g_{15}-g_{20}
(0, 0, -1, -2, -2, -2, -1)-e_{3}-e_{4}g_{-40}00000000000000000000000000000000000g_{-46}0000g_{-45}g_{-44}00002g_{-43}g_{-42}00-1/2g_{-40}01/2g_{-40}000002g_{-37}g_{-36}00000g_{-33}g_{-32}0000g_{-28}g_{-27}0000g_{-23}-g_{-22}000-g_{-17}-g_{-16}000-g_{-11}-g_{-10}00-g_{-4}-g_{-3}00-2h_{7}-4h_{6}-4h_{5}-4h_{4}-2h_{3}0-g_{2}-g_{3}-g_{8}-g_{9}-g_{14}000
(0, -1, -1, -1, -2, -2, -1)-e_{2}-e_{5}g_{-39}00000000000000000000000000000g_{-48}00002g_{-47}0000g_{-45}00000g_{-42}00g_{-41}-1/2g_{-39}1/2g_{-39}0-1/2g_{-39}1/2g_{-39}000g_{-36}00g_{-35}000g_{-33}00g_{-31}002g_{-29}00-g_{-26}00g_{-24}00-g_{-21}0g_{-18}00-g_{-15}0-g_{-12}0-g_{-9}0-g_{-5}-g_{-2}00-2h_{7}-4h_{6}-4h_{5}-2h_{4}-2h_{3}-2h_{2}0-g_{1}-g_{4}00-g_{10}0-g_{15}-g_{20}0
(-1, -1, -1, -1, -1, -2, -1)-e_{1}-e_{6}g_{-38}0000000000000000000000002g_{-49}000g_{-48}0000g_{-46}0000g_{-44}00000g_{-41}00001/2g_{-38}000-1/2g_{-38}1/2g_{-38}0g_{-35}0000g_{-34}0g_{-32}0000-g_{-30}g_{-28}0000-g_{-25}g_{-24}000-g_{-20}2g_{-19}00-g_{-14}0g_{-13}0-g_{-8}0-g_{-6}-g_{-1}00-2h_{7}-4h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}00-g_{5}00-g_{11}0-g_{16}0-g_{21}-g_{25}
(0, 0, 0, -2, -2, -2, -1)-2e_{4}g_{-37}00000000000000000000000000000000000g_{-44}0000g_{-42}00000g_{-40}0000-g_{-37}g_{-37}000000g_{-33}000000g_{-28}00000g_{-23}00000-g_{-17}0000-g_{-11}0000-g_{-4}000-h_{7}-2h_{6}-2h_{5}-2h_{4}00-g_{3}0-g_{9}0-g_{14}00000
(0, 0, -1, -1, -2, -2, -1)-e_{3}-e_{5}g_{-36}00000000000000000000000000000g_{-46}0000g_{-45}00002g_{-43}0g_{-41}000g_{-40}0g_{-39}00-1/2g_{-36}1/2g_{-36}-1/2g_{-36}1/2g_{-36}0000g_{-33}0g_{-32}00002g_{-29}0g_{-27}000g_{-24}0-g_{-22}000g_{-18}0-g_{-16}00-g_{-12}0-g_{-10}00-g_{-5}-g_{-3}00-2h_{7}-4h_{6}-4h_{5}-2h_{4}-2h_{3}00-g_{2}-g_{4}-g_{8}0-g_{10}0-g_{15}-g_{20}000
(0, -1, -1, -1, -1, -2, -1)-e_{2}-e_{6}g_{-35}000000000000000000000000g_{-48}0002g_{-47}0000g_{-45}0000g_{-42}00000g_{-39}000g_{-38}-1/2g_{-35}1/2g_{-35}00-1/2g_{-35}1/2g_{-35}00g_{-32}000g_{-31}00g_{-28}000-g_{-26}0g_{-24}000-g_{-21}02g_{-19}00-g_{-15}0g_{-13}0-g_{-9}00-g_{-6}-g_{-2}00-2h_{7}-4h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}00-g_{1}-g_{5}00-g_{11}00-g_{16}0-g_{21}-g_{25}0
(-1, -1, -1, -1, -1, -1, -1)-e_{1}-e_{7}g_{-34}00000000000000000002g_{-49}000g_{-48}000g_{-46}0000g_{-44}0000g_{-41}00000g_{-38}000001/2g_{-34}0000-1/2g_{-34}g_{-34}g_{-31}00000-g_{-30}g_{-27}0000-g_{-25}g_{-23}000-g_{-20}0g_{-18}00-g_{-14}0g_{-13}0-g_{-8}002g_{-7}-g_{-1}00-2h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}000-g_{6}00-g_{12}00-g_{17}0-g_{22}0-g_{26}-g_{30}
(0, 0, 0, -1, -2, -2, -1)-e_{4}-e_{5}g_{-33}00000000000000000000000000000g_{-44}0000g_{-42}g_{-41}000g_{-40}g_{-39}00002g_{-37}g_{-36}0000-1/2g_{-33}01/2g_{-33}000002g_{-29}g_{-28}00000g_{-24}g_{-23}0000g_{-18}-g_{-17}0000-g_{-12}-g_{-11}000-g_{-5}-g_{-4}000-2h_{7}-4h_{6}-4h_{5}-2h_{4}00-g_{3}-g_{4}0-g_{9}-g_{10}-g_{14}-g_{15}0-g_{20}00000
(0, 0, -1, -1, -1, -2, -1)-e_{3}-e_{6}g_{-32}000000000000000000000000g_{-46}000g_{-45}00002g_{-43}0000g_{-40}00g_{-38}00g_{-36}00g_{-35}00-1/2g_{-32}1/2g_{-32}0-1/2g_{-32}1/2g_{-32}000g_{-28}00g_{-27}000g_{-24}00-g_{-22}002g_{-19}00-g_{-16}00g_{-13}0-g_{-10}00-g_{-6}-g_{-3}000-2h_{7}-4h_{6}-2h_{5}-2h_{4}-2h_{3}00-g_{2}-g_{5}0-g_{8}0-g_{11}00-g_{16}0-g_{21}-g_{25}000
(0, -1, -1, -1, -1, -1, -1)-e_{2}-e_{7}g_{-31}0000000000000000000g_{-48}0002g_{-47}000g_{-45}0000g_{-42}0000g_{-39}00000g_{-35}0000g_{-34}-1/2g_{-31}1/2g_{-31}000-1/2g_{-31}g_{-31}0g_{-27}0000-g_{-26}0g_{-23}000-g_{-21}0g_{-18}00-g_{-15}00g_{-13}0-g_{-9}002g_{-7}-g_{-2}000-2h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}00-g_{1}-g_{6}000-g_{12}00-g_{17}00-g_{22}0-g_{26}-g_{30}0
(-1, -1, -1, -1, -1, -1, 0)-e_{1}+e_{7}g_{-30}000000000000000-2g_{-49}00-g_{-48}000-g_{-46}000-g_{-44}0000-g_{-41}0000-g_{-38}00000-g_{-34}0000001/2g_{-30}00001/2g_{-30}-g_{-30}g_{-26}0000-g_{-25}0g_{-22}000-g_{-20}0g_{-17}00-g_{-14}00g_{-12}0-g_{-8}00g_{-6}-g_{-1}000-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}0002g_{7}000g_{13}00g_{18}00g_{23}0g_{27}0g_{31}g_{34}
(0, 0, 0, 0, -2, -2, -1)-2e_{5}g_{-29}00000000000000000000000000000g_{-41}0000g_{-39}0000g_{-36}00000g_{-33}000000-g_{-29}g_{-29}000000g_{-24}000000g_{-18}00000-g_{-12}00000-g_{-5}0000-h_{7}-2h_{6}-2h_{5}000-g_{4}00-g_{10}00-g_{15}0-g_{20}00000000
(0, 0, 0, -1, -1, -2, -1)-e_{4}-e_{6}g_{-28}000000000000000000000000g_{-44}000g_{-42}0000g_{-40}0g_{-38}002g_{-37}0g_{-35}000g_{-33}0g_{-32}0000-1/2g_{-28}1/2g_{-28}-1/2g_{-28}1/2g_{-28}0000g_{-24}0g_{-23}00002g_{-19}0-g_{-17}000g_{-13}0-g_{-11}000-g_{-6}-g_{-4}000-2h_{7}-4h_{6}-2h_{5}-2h_{4}000-g_{3}-g_{5}0-g_{9}0-g_{11}-g_{14}0-g_{16}0-g_{21}0-g_{25}00000
(0, 0, -1, -1, -1, -1, -1)-e_{3}-e_{7}g_{-27}0000000000000000000g_{-46}000g_{-45}0002g_{-43}0000g_{-40}0000g_{-36}000g_{-34}0g_{-32}000g_{-31}00-1/2g_{-27}1/2g_{-27}00-1/2g_{-27}g_{-27}00g_{-23}000-g_{-22}00g_{-18}00-g_{-16}00g_{-13}0-g_{-10}0002g_{-7}-g_{-3}000-2h_{7}-2h_{6}-2h_{5}-2h_{4}-2h_{3}000-g_{2}-g_{6}0-g_{8}0-g_{12}000-g_{17}00-g_{22}0-g_{26}-g_{30}000
(0, -1, -1, -1, -1, -1, 0)-e_{2}+e_{7}g_{-26}000000000000000-g_{-48}00-2g_{-47}000-g_{-45}000-g_{-42}0000-g_{-39}0000-g_{-35}00000-g_{-31}00000g_{-30}-1/2g_{-26}1/2g_{-26}0001/2g_{-26}-g_{-26}0g_{-22}000-g_{-21}00g_{-17}00-g_{-15}00g_{-12}0-g_{-9}000g_{-6}-g_{-2}000-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}000-g_{1}2g_{7}000g_{13}000g_{18}00g_{23}00g_{27}0g_{31}g_{34}0
(-1, -1, -1, -1, -1, 0, 0)-e_{1}+e_{6}g_{-25}00000000000-2g_{-49}00-g_{-48}00-g_{-46}000-g_{-44}000-g_{-41}0000-g_{-38}00000-g_{-34}000000-g_{-30}000001/2g_{-25}0001/2g_{-25}-1/2g_{-25}0g_{-21}000-g_{-20}00g_{-16}00-g_{-14}00g_{-11}0-g_{-8}000g_{-5}-g_{-1}000-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}0000g_{6}000g_{13}0002g_{19}00g_{24}00g_{28}0g_{32}0g_{35}g_{38}
(0, 0, 0, 0, -1, -2, -1)-e_{5}-e_{6}g_{-24}000000000000000000000000g_{-41}000g_{-39}g_{-38}000g_{-36}g_{-35}000g_{-33}g_{-32}00002g_{-29}g_{-28}000000-1/2g_{-24}01/2g_{-24}000002g_{-19}g_{-18}00000g_{-13}-g_{-12}0000-g_{-6}-g_{-5}0000-2h_{7}-4h_{6}-2h_{5}000-g_{4}-g_{5}00-g_{10}-g_{11}0-g_{15}-g_{16}0-g_{20}-g_{21}0-g_{25}00000000
(0, 0, 0, -1, -1, -1, -1)-e_{4}-e_{7}g_{-23}0000000000000000000g_{-44}000g_{-42}000g_{-40}00002g_{-37}00g_{-34}0g_{-33}00g_{-31}00g_{-28}00g_{-27}0000-1/2g_{-23}1/2g_{-23}0-1/2g_{-23}g_{-23}000g_{-18}00-g_{-17}000g_{-13}0-g_{-11}0002g_{-7}-g_{-4}0000-2h_{7}-2h_{6}-2h_{5}-2h_{4}000-g_{3}-g_{6}00-g_{9}0-g_{12}-g_{14}00-g_{17}00-g_{22}0-g_{26}0-g_{30}00000
(0, 0, -1, -1, -1, -1, 0)-e_{3}+e_{7}g_{-22}000000000000000-g_{-46}00-g_{-45}000-2g_{-43}000-g_{-40}0000-g_{-36}0000-g_{-32}0000g_{-30}-g_{-27}0000g_{-26}00-1/2g_{-22}1/2g_{-22}001/2g_{-22}-g_{-22}00g_{-17}00-g_{-16}000g_{-12}0-g_{-10}000g_{-6}-g_{-3}0000-2h_{6}-2h_{5}-2h_{4}-2h_{3}000-g_{2}2g_{7}00-g_{8}0g_{13}000g_{18}000g_{23}00g_{27}0g_{31}g_{34}000
(0, -1, -1, -1, -1, 0, 0)-e_{2}+e_{6}g_{-21}00000000000-g_{-48}00-2g_{-47}00-g_{-45}000-g_{-42}000-g_{-39}0000-g_{-35}00000-g_{-31}000000-g_{-26}0000g_{-25}-1/2g_{-21}1/2g_{-21}001/2g_{-21}-1/2g_{-21}00g_{-16}00-g_{-15}000g_{-11}0-g_{-9}000g_{-5}-g_{-2}0000-2h_{5}-2h_{4}-2h_{3}-2h_{2}000-g_{1}g_{6}0000g_{13}0002g_{19}000g_{24}00g_{28}00g_{32}0g_{35}g_{38}0
(-1, -1, -1, -1, 0, 0, 0)-e_{1}+e_{5}g_{-20}00000000-2g_{-49}0-g_{-48}00-g_{-46}00-g_{-44}000-g_{-41}0000-g_{-38}00000-g_{-34}00000-g_{-30}000000-g_{-25}00001/2g_{-20}001/2g_{-20}-1/2g_{-20}00g_{-15}00-g_{-14}000g_{-10}0-g_{-8}000g_{-4}-g_{-1}0000-2h_{4}-2h_{3}-2h_{2}-2h_{1}0000g_{5}0000g_{12}000g_{18}000g_{24}002g_{29}00g_{33}0g_{36}0g_{39}g_{41}
(0, 0, 0, 0, 0, -2, -1)-2e_{6}g_{-19}000000000000000000000000g_{-38}000g_{-35}0000g_{-32}0000g_{-28}00000g_{-24}00000000-g_{-19}g_{-19}000000g_{-13}000000-g_{-6}00000-h_{7}-2h_{6}0000-g_{5}000-g_{11}000-g_{16}00-g_{21}00-g_{25}00000000000
(0, 0, 0, 0, -1, -1, -1)-e_{5}-e_{7}g_{-18}0000000000000000000g_{-41}000g_{-39}000g_{-36}0g_{-34}00g_{-33}0g_{-31}002g_{-29}0g_{-27}000g_{-24}0g_{-23}000000-1/2g_{-18}1/2g_{-18}-1/2g_{-18}g_{-18}0000g_{-13}0-g_{-12}00002g_{-7}-g_{-5}0000-2h_{7}-2h_{6}-2h_{5}0000-g_{4}-g_{6}00-g_{10}0-g_{12}0-g_{15}0-g_{17}-g_{20}0-g_{22}00-g_{26}0-g_{30}00000000
(0, 0, 0, -1, -1, -1, 0)-e_{4}+e_{7}g_{-17}000000000000000-g_{-44}00-g_{-42}000-g_{-40}000-2g_{-37}0000-g_{-33}000g_{-30}-g_{-28}000g_{-26}0-g_{-23}000g_{-22}0000-1/2g_{-17}1/2g_{-17}01/2g_{-17}-g_{-17}000g_{-12}0-g_{-11}0000g_{-6}-g_{-4}0000-2h_{6}-2h_{5}-2h_{4}0000-g_{3}2g_{7}00-g_{9}0g_{13}0-g_{14}00g_{18}000g_{23}00g_{27}0g_{31}0g_{34}00000
(0, 0, -1, -1, -1, 0, 0)-e_{3}+e_{6}g_{-16}00000000000-g_{-46}00-g_{-45}00-2g_{-43}000-g_{-40}000-g_{-36}0000-g_{-32}00000-g_{-27}0000g_{-25}0-g_{-22}000g_{-21}00-1/2g_{-16}1/2g_{-16}01/2g_{-16}-1/2g_{-16}000g_{-11}0-g_{-10}0000g_{-5}-g_{-3}0000-2h_{5}-2h_{4}-2h_{3}0000-g_{2}g_{6}00-g_{8}0g_{13}00002g_{19}000g_{24}000g_{28}00g_{32}0g_{35}g_{38}000
(0, -1, -1, -1, 0, 0, 0)-e_{2}+e_{5}g_{-15}00000000-g_{-48}0-2g_{-47}00-g_{-45}00-g_{-42}000-g_{-39}0000-g_{-35}00000-g_{-31}00000-g_{-26}000000-g_{-21}000g_{-20}-1/2g_{-15}1/2g_{-15}01/2g_{-15}-1/2g_{-15}000g_{-10}0-g_{-9}0000g_{-4}-g_{-2}0000-2h_{4}-2h_{3}-2h_{2}0000-g_{1}g_{5}0000g_{12}0000g_{18}000g_{24}0002g_{29}00g_{33}00g_{36}0g_{39}g_{41}0
(-1, -1, -1, 0, 0, 0, 0)-e_{1}+e_{4}g_{-14}00000-2g_{-49}0-g_{-48}0-g_{-46}00-g_{-44}000-g_{-41}0000-g_{-38}0000-g_{-34}00000-g_{-30}00000-g_{-25}000000-g_{-20}0001/2g_{-14}01/2g_{-14}-1/2g_{-14}000g_{-9}0-g_{-8}0000g_{-3}-g_{-1}0000-2h_{3}-2h_{2}-2h_{1}00000g_{4}0000g_{11}0000g_{17}000g_{23}000g_{28}00g_{33}002g_{37}0g_{40}0g_{42}g_{44}
(0, 0, 0, 0, 0, -1, -1)-e_{6}-e_{7}g_{-13}0000000000000000000g_{-38}000g_{-35}g_{-34}00g_{-32}g_{-31}000g_{-28}g_{-27}000g_{-24}g_{-23}00002g_{-19}g_{-18}00000000-1/2g_{-13}0g_{-13}000002g_{-7}-g_{-6}00000-2h_{7}-2h_{6}0000-g_{5}-g_{6}000-g_{11}-g_{12}00-g_{16}-g_{17}00-g_{21}-g_{22}0-g_{25}-g_{26}00-g_{30}00000000000
(0, 0, 0, 0, -1, -1, 0)-e_{5}+e_{7}g_{-12}000000000000000-g_{-41}00-g_{-39}000-g_{-36}000-g_{-33}00g_{-30}0-2g_{-29}00g_{-26}0-g_{-24}00g_{-22}00-g_{-18}00g_{-17}000000-1/2g_{-12}1/2g_{-12}1/2g_{-12}-g_{-12}0000g_{-6}-g_{-5}00000-2h_{6}-2h_{5}0000-g_{4}2g_{7}000-g_{10}0g_{13}0-g_{15}00g_{18}-g_{20}00g_{23}00g_{27}00g_{31}0g_{34}00000000
(0, 0, 0, -1, -1, 0, 0)-e_{4}+e_{6}g_{-11}00000000000-g_{-44}00-g_{-42}00-g_{-40}000-2g_{-37}000-g_{-33}0000-g_{-28}0000g_{-25}-g_{-23}000g_{-21}00-g_{-17}00g_{-16}0000-1/2g_{-11}1/2g_{-11}1/2g_{-11}-1/2g_{-11}0000g_{-5}-g_{-4}00000-2h_{5}-2h_{4}0000-g_{3}g_{6}000-g_{9}0g_{13}0-g_{14}002g_{19}0000g_{24}000g_{28}00g_{32}0g_{35}0g_{38}00000
(0, 0, -1, -1, 0, 0, 0)-e_{3}+e_{5}g_{-10}00000000-g_{-46}0-g_{-45}00-2g_{-43}00-g_{-40}000-g_{-36}0000-g_{-32}00000-g_{-27}00000-g_{-22}000g_{-20}00-g_{-16}00g_{-15}00-1/2g_{-10}1/2g_{-10}1/2g_{-10}-1/2g_{-10}0000g_{-4}-g_{-3}00000-2h_{4}-2h_{3}0000-g_{2}g_{5}000-g_{8}0g_{12}0000g_{18}0000g_{24}0002g_{29}000g_{33}00g_{36}0g_{39}g_{41}000
(0, -1, -1, 0, 0, 0, 0)-e_{2}+e_{4}g_{-9}00000-g_{-48}0-2g_{-47}0-g_{-45}00-g_{-42}000-g_{-39}0000-g_{-35}0000-g_{-31}00000-g_{-26}00000-g_{-21}000000-g_{-15}00g_{-14}-1/2g_{-9}1/2g_{-9}1/2g_{-9}-1/2g_{-9}0000g_{-3}-g_{-2}00000-2h_{3}-2h_{2}0000-g_{1}g_{4}00000g_{11}0000g_{17}0000g_{23}000g_{28}000g_{33}002g_{37}00g_{40}0g_{42}g_{44}0
(-1, -1, 0, 0, 0, 0, 0)-e_{1}+e_{3}g_{-8}000-2g_{-49}-g_{-48}0-g_{-46}00-g_{-44}000-g_{-41}000-g_{-38}0000-g_{-34}0000-g_{-30}00000-g_{-25}00000-g_{-20}000000-g_{-14}001/2g_{-8}1/2g_{-8}-1/2g_{-8}0000g_{-2}-g_{-1}00000-2h_{2}-2h_{1}00000g_{3}00000g_{10}0000g_{16}0000g_{22}000g_{27}000g_{32}00g_{36}00g_{40}02g_{43}0g_{45}g_{46}
(0, 0, 0, 0, 0, 0, -1)-2e_{7}g_{-7}0000000000000000000g_{-34}000g_{-31}000g_{-27}0000g_{-23}0000g_{-18}00000g_{-13}0000000000-g_{-7}2g_{-7}000000-h_{7}00000-g_{6}0000-g_{12}0000-g_{17}000-g_{22}000-g_{26}00-g_{30}000000000000000
(0, 0, 0, 0, 0, -1, 0)-e_{6}+e_{7}g_{-6}000000000000000-g_{-38}00-g_{-35}000-g_{-32}0g_{-30}0-g_{-28}0g_{-26}00-g_{-24}0g_{-22}00-2g_{-19}0g_{-17}000-g_{-13}0g_{-12}00000000-1/2g_{-6}g_{-6}-g_{-6}00000-2h_{6}00000-g_{5}2g_{7}000-g_{11}0g_{13}00-g_{16}0g_{18}0-g_{21}0g_{23}0-g_{25}0g_{27}00g_{31}00g_{34}00000000000
(0, 0, 0, 0, -1, 0, 0)-e_{5}+e_{6}g_{-5}00000000000-g_{-41}00-g_{-39}00-g_{-36}000-g_{-33}000-2g_{-29}000g_{-25}-g_{-24}000g_{-21}0-g_{-18}00g_{-16}000-g_{-12}0g_{-11}000000-1/2g_{-5}g_{-5}-1/2g_{-5}00000-2h_{5}00000-g_{4}g_{6}000-g_{10}0g_{13}00-g_{15}002g_{19}-g_{20}000g_{24}000g_{28}00g_{32}00g_{35}0g_{38}00000000
(0, 0, 0, -1, 0, 0, 0)-e_{4}+e_{5}g_{-4}00000000-g_{-44}0-g_{-42}00-g_{-40}00-2g_{-37}000-g_{-33}0000-g_{-28}00000-g_{-23}000g_{-20}0-g_{-17}00g_{-15}000-g_{-11}0g_{-10}0000-1/2g_{-4}g_{-4}-1/2g_{-4}00000-2h_{4}00000-g_{3}g_{5}000-g_{9}0g_{12}00-g_{14}00g_{18}0000g_{24}00002g_{29}000g_{33}00g_{36}0g_{39}0g_{41}00000
(0, 0, -1, 0, 0, 0, 0)-e_{3}+e_{4}g_{-3}00000-g_{-46}0-g_{-45}0-2g_{-43}00-g_{-40}000-g_{-36}0000-g_{-32}0000-g_{-27}00000-g_{-22}00000-g_{-16}00g_{-14}000-g_{-10}0g_{-9}00-1/2g_{-3}g_{-3}-1/2g_{-3}00000-2h_{3}00000-g_{2}g_{4}000-g_{8}0g_{11}00000g_{17}0000g_{23}0000g_{28}000g_{33}0002g_{37}00g_{40}0g_{42}g_{44}000
(0, -1, 0, 0, 0, 0, 0)-e_{2}+e_{3}g_{-2}000-g_{-48}-2g_{-47}0-g_{-45}00-g_{-42}000-g_{-39}000-g_{-35}0000-g_{-31}0000-g_{-26}00000-g_{-21}00000-g_{-15}000000-g_{-9}0g_{-8}-1/2g_{-2}g_{-2}-1/2g_{-2}00000-2h_{2}00000-g_{1}g_{3}00000g_{10}00000g_{16}0000g_{22}0000g_{27}000g_{32}000g_{36}00g_{40}002g_{43}0g_{45}g_{46}0
(-1, 0, 0, 0, 0, 0, 0)-e_{1}+e_{2}g_{-1}0-2g_{-49}-g_{-48}0-g_{-46}00-g_{-44}00-g_{-41}000-g_{-38}000-g_{-34}0000-g_{-30}0000-g_{-25}00000-g_{-20}00000-g_{-14}000000-g_{-8}0g_{-1}-1/2g_{-1}00000-2h_{1}000000g_{2}00000g_{9}00000g_{15}0000g_{21}0000g_{26}000g_{31}000g_{35}00g_{39}00g_{42}0g_{45}02g_{47}g_{48}
(0, 0, 0, 0, 0, 0, 0)0h_{1}-g_{-49}0g_{-47}-1/2g_{-46}1/2g_{-45}-1/2g_{-44}01/2g_{-42}-1/2g_{-41}01/2g_{-39}-1/2g_{-38}001/2g_{-35}-1/2g_{-34}001/2g_{-31}-1/2g_{-30}0001/2g_{-26}-1/2g_{-25}0001/2g_{-21}-1/2g_{-20}00001/2g_{-15}-1/2g_{-14}00001/2g_{-9}-1/2g_{-8}000001/2g_{-2}-g_{-1}0000000g_{1}-1/2g_{2}000001/2g_{8}-1/2g_{9}00001/2g_{14}-1/2g_{15}00001/2g_{20}-1/2g_{21}0001/2g_{25}-1/2g_{26}0001/2g_{30}-1/2g_{31}001/2g_{34}-1/2g_{35}001/2g_{38}-1/2g_{39}01/2g_{41}-1/2g_{42}01/2g_{44}-1/2g_{45}1/2g_{46}-g_{47}0g_{49}
(0, 0, 0, 0, 0, 0, 0)0h_{2}0-1/2g_{-48}-g_{-47}1/2g_{-46}00g_{-43}-1/2g_{-42}01/2g_{-40}-1/2g_{-39}001/2g_{-36}-1/2g_{-35}001/2g_{-32}-1/2g_{-31}0001/2g_{-27}-1/2g_{-26}0001/2g_{-22}-1/2g_{-21}00001/2g_{-16}-1/2g_{-15}00001/2g_{-10}-1/2g_{-9}-1/2g_{-8}00001/2g_{-3}-g_{-2}1/2g_{-1}0000000-1/2g_{1}g_{2}-1/2g_{3}00001/2g_{8}1/2g_{9}-1/2g_{10}00001/2g_{15}-1/2g_{16}00001/2g_{21}-1/2g_{22}0001/2g_{26}-1/2g_{27}0001/2g_{31}-1/2g_{32}001/2g_{35}-1/2g_{36}001/2g_{39}-1/2g_{40}01/2g_{42}-g_{43}00-1/2g_{46}g_{47}1/2g_{48}0
(0, 0, 0, 0, 0, 0, 0)0h_{3}000-1/2g_{-46}-1/2g_{-45}1/2g_{-44}-g_{-43}1/2g_{-42}0000g_{-37}-1/2g_{-36}001/2g_{-33}-1/2g_{-32}0001/2g_{-28}-1/2g_{-27}0001/2g_{-23}-1/2g_{-22}00001/2g_{-17}-1/2g_{-16}0-1/2g_{-14}001/2g_{-11}-1/2g_{-10}-1/2g_{-9}1/2g_{-8}0001/2g_{-4}-g_{-3}1/2g_{-2}000000000-1/2g_{2}g_{3}-1/2g_{4}000-1/2g_{8}1/2g_{9}1/2g_{10}-1/2g_{11}001/2g_{14}01/2g_{16}-1/2g_{17}00001/2g_{22}-1/2g_{23}0001/2g_{27}-1/2g_{28}0001/2g_{32}-1/2g_{33}001/2g_{36}-g_{37}0000-1/2g_{42}g_{43}-1/2g_{44}1/2g_{45}1/2g_{46}000
(0, 0, 0, 0, 0, 0, 0)0h_{4}00000-1/2g_{-44}0-1/2g_{-42}1/2g_{-41}-1/2g_{-40}1/2g_{-39}0-g_{-37}1/2g_{-36}000000g_{-29}-1/2g_{-28}0001/2g_{-24}-1/2g_{-23}00-1/2g_{-20}01/2g_{-18}-1/2g_{-17}0-1/2g_{-15}1/2g_{-14}01/2g_{-12}-1/2g_{-11}-1/2g_{-10}1/2g_{-9}0001/2g_{-5}-g_{-4}1/2g_{-3}00000000000-1/2g_{3}g_{4}-1/2g_{5}000-1/2g_{9}1/2g_{10}1/2g_{11}-1/2g_{12}0-1/2g_{14}1/2g_{15}01/2g_{17}-1/2g_{18}01/2g_{20}001/2g_{23}-1/2g_{24}0001/2g_{28}-g_{29}000000-1/2g_{36}g_{37}0-1/2g_{39}1/2g_{40}-1/2g_{41}1/2g_{42}01/2g_{44}00000
(0, 0, 0, 0, 0, 0, 0)0h_{5}00000000-1/2g_{-41}0-1/2g_{-39}1/2g_{-38}0-1/2g_{-36}1/2g_{-35}0-1/2g_{-33}1/2g_{-32}00-g_{-29}1/2g_{-28}00-1/2g_{-25}000-1/2g_{-21}1/2g_{-20}g_{-19}-1/2g_{-18}0-1/2g_{-16}1/2g_{-15}01/2g_{-13}-1/2g_{-12}-1/2g_{-11}1/2g_{-10}0001/2g_{-6}-g_{-5}1/2g_{-4}0000000000000-1/2g_{4}g_{5}-1/2g_{6}000-1/2g_{10}1/2g_{11}1/2g_{12}-1/2g_{13}0-1/2g_{15}1/2g_{16}01/2g_{18}-g_{19}-1/2g_{20}1/2g_{21}0001/2g_{25}00-1/2g_{28}g_{29}00-1/2g_{32}1/2g_{33}0-1/2g_{35}1/2g_{36}0-1/2g_{38}1/2g_{39}01/2g_{41}00000000
(0, 0, 0, 0, 0, 0, 0)0h_{6}00000000000-1/2g_{-38}00-1/2g_{-35}1/2g_{-34}0-1/2g_{-32}1/2g_{-31}-1/2g_{-30}0-1/2g_{-28}1/2g_{-27}-1/2g_{-26}1/2g_{-25}-1/2g_{-24}1/2g_{-23}-1/2g_{-22}1/2g_{-21}0-g_{-19}1/2g_{-18}-1/2g_{-17}1/2g_{-16}000-1/2g_{-12}1/2g_{-11}000g_{-7}-g_{-6}1/2g_{-5}000000000000000-1/2g_{5}g_{6}-g_{7}000-1/2g_{11}1/2g_{12}000-1/2g_{16}1/2g_{17}-1/2g_{18}g_{19}0-1/2g_{21}1/2g_{22}-1/2g_{23}1/2g_{24}-1/2g_{25}1/2g_{26}-1/2g_{27}1/2g_{28}01/2g_{30}-1/2g_{31}1/2g_{32}0-1/2g_{34}1/2g_{35}001/2g_{38}00000000000
(0, 0, 0, 0, 0, 0, 0)0h_{7}000000000000000-g_{-34}00-g_{-31}g_{-30}00-g_{-27}g_{-26}00-g_{-23}g_{-22}000-g_{-18}g_{-17}000-g_{-13}g_{-12}0000-2g_{-7}g_{-6}00000000000000000-g_{6}2g_{7}0000-g_{12}g_{13}000-g_{17}g_{18}000-g_{22}g_{23}00-g_{26}g_{27}00-g_{30}g_{31}00g_{34}000000000000000
(1, 0, 0, 0, 0, 0, 0)e_{1}-e_{2}g_{1}-g_{-48}-2g_{-47}0-g_{-45}0-g_{-42}00-g_{-39}00-g_{-35}000-g_{-31}000-g_{-26}0000-g_{-21}0000-g_{-15}00000-g_{-9}00000-g_{-2}0000002h_{1}-g_{1}1/2g_{1}000000g_{8}000000g_{14}00000g_{20}00000g_{25}0000g_{30}0000g_{34}000g_{38}000g_{41}00g_{44}00g_{46}0g_{48}2g_{49}0
(0, 1, 0, 0, 0, 0, 0)e_{2}-e_{3}g_{2}0-g_{-46}-g_{-45}0-2g_{-43}00-g_{-40}00-g_{-36}000-g_{-32}000-g_{-27}0000-g_{-22}0000-g_{-16}00000-g_{-10}00000-g_{-3}g_{-1}000002h_{2}01/2g_{2}-g_{2}1/2g_{2}0000-g_{8}0g_{9}000000g_{15}00000g_{21}00000g_{26}0000g_{31}0000g_{35}000g_{39}000g_{42}00g_{45}02g_{47}g_{48}000
(0, 0, 1, 0, 0, 0, 0)e_{3}-e_{4}g_{3}000-g_{-44}-g_{-42}0-g_{-40}00-2g_{-37}000-g_{-33}000-g_{-28}0000-g_{-23}0000-g_{-17}00000-g_{-11}0g_{-8}000-g_{-4}g_{-2}000002h_{3}0001/2g_{3}-g_{3}1/2g_{3}0000-g_{9}0g_{10}000-g_{14}00g_{16}00000g_{22}00000g_{27}0000g_{32}0000g_{36}000g_{40}002g_{43}0g_{45}0g_{46}00000
(0, 0, 0, 1, 0, 0, 0)e_{4}-e_{5}g_{4}00000-g_{-41}0-g_{-39}0-g_{-36}00-g_{-33}000-2g_{-29}0000-g_{-24}0000-g_{-18}00g_{-14}00-g_{-12}0g_{-9}000-g_{-5}g_{-3}000002h_{4}000001/2g_{4}-g_{4}1/2g_{4}0000-g_{10}0g_{11}000-g_{15}00g_{17}0-g_{20}000g_{23}00000g_{28}0000g_{33}0002g_{37}00g_{40}00g_{42}0g_{44}00000000
(0, 0, 0, 0, 1, 0, 0)e_{5}-e_{6}g_{5}00000000-g_{-38}0-g_{-35}00-g_{-32}00-g_{-28}000-g_{-24}000g_{-20}-2g_{-19}00g_{-15}00-g_{-13}0g_{-10}000-g_{-6}g_{-4}000002h_{5}00000001/2g_{5}-g_{5}1/2g_{5}0000-g_{11}0g_{12}000-g_{16}00g_{18}0-g_{21}000g_{24}-g_{25}0002g_{29}000g_{33}000g_{36}00g_{39}00g_{41}00000000000
(0, 0, 0, 0, 0, 1, 0)e_{6}-e_{7}g_{6}00000000000-g_{-34}00-g_{-31}00-g_{-27}0g_{-25}0-g_{-23}0g_{-21}0-g_{-18}0g_{-16}00-g_{-13}0g_{-11}000-2g_{-7}g_{-5}000002h_{6}0000000001/2g_{6}-g_{6}g_{6}0000-g_{12}0g_{13}000-g_{17}02g_{19}00-g_{22}0g_{24}00-g_{26}0g_{28}0-g_{30}0g_{32}000g_{35}00g_{38}000000000000000
(0, 0, 0, 0, 0, 0, 1)2e_{7}g_{7}000000000000000g_{-30}00g_{-26}000g_{-22}000g_{-17}0000g_{-12}0000g_{-6}00000h_{7}00000000000g_{7}-2g_{7}00000-g_{13}00000-g_{18}0000-g_{23}0000-g_{27}000-g_{31}000-g_{34}0000000000000000000
(1, 1, 0, 0, 0, 0, 0)e_{1}-e_{3}g_{8}-g_{-46}-g_{-45}0-2g_{-43}0-g_{-40}00-g_{-36}00-g_{-32}000-g_{-27}000-g_{-22}0000-g_{-16}0000-g_{-10}00000-g_{-3}000002h_{2}+2h_{1}00000g_{1}-g_{2}-1/2g_{8}-1/2g_{8}1/2g_{8}000000g_{14}000000g_{20}00000g_{25}00000g_{30}0000g_{34}0000g_{38}000g_{41}000g_{44}00g_{46}0g_{48}2g_{49}000
(0, 1, 1, 0, 0, 0, 0)e_{2}-e_{4}g_{9}0-g_{-44}-g_{-42}0-g_{-40}00-2g_{-37}00-g_{-33}000-g_{-28}000-g_{-23}0000-g_{-17}0000-g_{-11}00000-g_{-4}g_{-1}00002h_{3}+2h_{2}00000g_{2}-g_{3}01/2g_{9}-1/2g_{9}-1/2g_{9}1/2g_{9}000-g_{14}00g_{15}000000g_{21}00000g_{26}00000g_{31}0000g_{35}0000g_{39}000g_{42}00g_{45}02g_{47}0g_{48}00000
(0, 0, 1, 1, 0, 0, 0)e_{3}-e_{5}g_{10}000-g_{-41}-g_{-39}0-g_{-36}00-g_{-33}000-2g_{-29}000-g_{-24}0000-g_{-18}0000-g_{-12}0g_{-8}000-g_{-5}g_{-2}00002h_{4}+2h_{3}00000g_{3}-g_{4}0001/2g_{10}-1/2g_{10}-1/2g_{10}1/2g_{10}000-g_{15}00g_{16}00-g_{20}000g_{22}00000g_{27}00000g_{32}0000g_{36}000g_{40}002g_{43}00g_{45}0g_{46}00000000
(0, 0, 0, 1, 1, 0, 0)e_{4}-e_{6}g_{11}00000-g_{-38}0-g_{-35}0-g_{-32}00-g_{-28}000-g_{-24}0000-2g_{-19}00g_{-14}0-g_{-13}0g_{-9}000-g_{-6}g_{-3}00002h_{5}+2h_{4}00000g_{4}-g_{5}000001/2g_{11}-1/2g_{11}-1/2g_{11}1/2g_{11}000-g_{16}00g_{17}00-g_{21}000g_{23}-g_{25}0000g_{28}0000g_{33}0002g_{37}000g_{40}00g_{42}00g_{44}00000000000
(0, 0, 0, 0, 1, 1, 0)e_{5}-e_{7}g_{12}00000000-g_{-34}0-g_{-31}00-g_{-27}00-g_{-23}00g_{-20}-g_{-18}00g_{-15}0-g_{-13}0g_{-10}000-2g_{-7}g_{-4}00002h_{6}+2h_{5}00000g_{5}-g_{6}00000001/2g_{12}-1/2g_{12}-1/2g_{12}g_{12}000-g_{17}00g_{18}00-g_{22}00g_{24}0-g_{26}002g_{29}0-g_{30}00g_{33}000g_{36}000g_{39}00g_{41}000000000000000
(0, 0, 0, 0, 0, 1, 1)e_{6}+e_{7}g_{13}00000000000g_{-30}00g_{-26}g_{-25}0g_{-22}g_{-21}00g_{-17}g_{-16}00g_{-12}g_{-11}000g_{-6}g_{-5}00002h_{7}+2h_{6}00000g_{6}-2g_{7}0000000001/2g_{13}0-g_{13}0000-g_{18}-2g_{19}0000-g_{23}-g_{24}000-g_{27}-g_{28}000-g_{31}-g_{32}00-g_{34}-g_{35}000-g_{38}0000000000000000000
(1, 1, 1, 0, 0, 0, 0)e_{1}-e_{4}g_{14}-g_{-44}-g_{-42}0-g_{-40}0-2g_{-37}00-g_{-33}00-g_{-28}000-g_{-23}000-g_{-17}0000-g_{-11}0000-g_{-4}000002h_{3}+2h_{2}+2h_{1}0000g_{1}-g_{3}0000g_{8}0-g_{9}-1/2g_{14}0-1/2g_{14}1/2g_{14}000000g_{20}000000g_{25}00000g_{30}00000g_{34}0000g_{38}0000g_{41}000g_{44}00g_{46}0g_{48}02g_{49}00000
(0, 1, 1, 1, 0, 0, 0)e_{2}-e_{5}g_{15}0-g_{-41}-g_{-39}0-g_{-36}00-g_{-33}00-2g_{-29}000-g_{-24}000-g_{-18}0000-g_{-12}0000-g_{-5}g_{-1}00002h_{4}+2h_{3}+2h_{2}0000g_{2}-g_{4}0000g_{9}0-g_{10}01/2g_{15}-1/2g_{15}0-1/2g_{15}1/2g_{15}00-g_{20}000g_{21}000000g_{26}00000g_{31}00000g_{35}0000g_{39}000g_{42}00g_{45}002g_{47}0g_{48}00000000
(0, 0, 1, 1, 1, 0, 0)e_{3}-e_{6}g_{16}000-g_{-38}-g_{-35}0-g_{-32}00-g_{-28}000-g_{-24}000-2g_{-19}0000-g_{-13}0g_{-8}00-g_{-6}g_{-2}00002h_{5}+2h_{4}+2h_{3}0000g_{3}-g_{5}0000g_{10}0-g_{11}0001/2g_{16}-1/2g_{16}0-1/2g_{16}1/2g_{16}00-g_{21}000g_{22}0-g_{25}0000g_{27}00000g_{32}0000g_{36}000g_{40}0002g_{43}00g_{45}00g_{46}00000000000
(0, 0, 0, 1, 1, 1, 0)e_{4}-e_{7}g_{17}00000-g_{-34}0-g_{-31}0-g_{-27}00-g_{-23}000-g_{-18}00g_{-14}0-g_{-13}0g_{-9}00-2g_{-7}g_{-3}00002h_{6}+2h_{5}+2h_{4}0000g_{4}-g_{6}0000g_{11}0-g_{12}000001/2g_{17}-1/2g_{17}0-1/2g_{17}g_{17}00-g_{22}000g_{23}0-g_{26}000g_{28}-g_{30}000g_{33}00002g_{37}000g_{40}000g_{42}00g_{44}000000000000000
(0, 0, 0, 0, 1, 1, 1)e_{5}+e_{7}g_{18}00000000g_{-30}0g_{-26}00g_{-22}0g_{-20}g_{-17}0g_{-15}0g_{-12}0g_{-10}00g_{-6}g_{-4}00002h_{7}+2h_{6}+2h_{5}0000g_{5}-2g_{7}0000g_{12}0-g_{13}00000001/2g_{18}-1/2g_{18}1/2g_{18}-g_{18}000-g_{23}0-g_{24}000-g_{27}0-2g_{29}00-g_{31}0-g_{33}00-g_{34}0-g_{36}000-g_{39}000-g_{41}0000000000000000000
(0, 0, 0, 0, 0, 2, 1)2e_{6}g_{19}00000000000g_{-25}00g_{-21}00g_{-16}000g_{-11}000g_{-5}0000h_{7}+2h_{6}00000g_{6}000000-g_{13}000000000g_{19}-g_{19}00000-g_{24}00000-g_{28}0000-g_{32}0000-g_{35}000-g_{38}000000000000000000000000
(1, 1, 1, 1, 0, 0, 0)e_{1}-e_{5}g_{20}-g_{-41}-g_{-39}0-g_{-36}0-g_{-33}00-2g_{-29}00-g_{-24}000-g_{-18}000-g_{-12}0000-g_{-5}00002h_{4}+2h_{3}+2h_{2}+2h_{1}0000g_{1}-g_{4}000g_{8}0-g_{10}000g_{14}00-g_{15}-1/2g_{20}00-1/2g_{20}1/2g_{20}000000g_{25}000000g_{30}00000g_{34}00000g_{38}0000g_{41}000g_{44}00g_{46}00g_{48}02g_{49}00000000
(0, 1, 1, 1, 1, 0, 0)e_{2}-e_{6}g_{21}0-g_{-38}-g_{-35}0-g_{-32}00-g_{-28}00-g_{-24}000-2g_{-19}000-g_{-13}0000-g_{-6}g_{-1}0002h_{5}+2h_{4}+2h_{3}+2h_{2}0000g_{2}-g_{5}000g_{9}0-g_{11}000g_{15}00-g_{16}01/2g_{21}-1/2g_{21}00-1/2g_{21}1/2g_{21}0-g_{25}0000g_{26}000000g_{31}00000g_{35}0000g_{39}000g_{42}000g_{45}002g_{47}00g_{48}00000000000
(0, 0, 1, 1, 1, 1, 0)e_{3}-e_{7}g_{22}000-g_{-34}-g_{-31}0-g_{-27}00-g_{-23}000-g_{-18}000-g_{-13}0g_{-8}00-2g_{-7}g_{-2}0002h_{6}+2h_{5}+2h_{4}+2h_{3}0000g_{3}-g_{6}000g_{10}0-g_{12}000g_{16}00-g_{17}0001/2g_{22}-1/2g_{22}00-1/2g_{22}g_{22}0-g_{26}0000g_{27}-g_{30}0000g_{32}0000g_{36}0000g_{40}0002g_{43}000g_{45}00g_{46}000000000000000
(0, 0, 0, 1, 1, 1, 1)e_{4}+e_{7}g_{23}00000g_{-30}0g_{-26}0g_{-22}00g_{-17}00g_{-14}g_{-12}0g_{-9}00g_{-6}g_{-3}0002h_{7}+2h_{6}+2h_{5}+2h_{4}0000g_{4}-2g_{7}000g_{11}0-g_{13}000g_{17}00-g_{18}000001/2g_{23}-1/2g_{23}01/2g_{23}-g_{23}00-g_{27}00-g_{28}00-g_{31}00-g_{33}0-g_{34}00-2g_{37}0000-g_{40}000-g_{42}000-g_{44}0000000000000000000
(0, 0, 0, 0, 1, 2, 1)e_{5}+e_{6}g_{24}00000000g_{-25}0g_{-21}g_{-20}0g_{-16}g_{-15}0g_{-11}g_{-10}00g_{-5}g_{-4}0002h_{7}+4h_{6}+2h_{5}0000g_{5}g_{6}0000g_{12}-g_{13}00000-g_{18}-2g_{19}00000001/2g_{24}0-1/2g_{24}0000-g_{28}-2g_{29}0000-g_{32}-g_{33}000-g_{35}-g_{36}000-g_{38}-g_{39}000-g_{41}000000000000000000000000
(1, 1, 1, 1, 1, 0, 0)e_{1}-e_{6}g_{25}-g_{-38}-g_{-35}0-g_{-32}0-g_{-28}00-g_{-24}00-2g_{-19}000-g_{-13}000-g_{-6}00002h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}000g_{1}-g_{5}000g_{8}0-g_{11}00g_{14}00-g_{16}00g_{20}000-g_{21}-1/2g_{25}000-1/2g_{25}1/2g_{25}000000g_{30}000000g_{34}00000g_{38}0000g_{41}000g_{44}000g_{46}00g_{48}002g_{49}00000000000
(0, 1, 1, 1, 1, 1, 0)e_{2}-e_{7}g_{26}0-g_{-34}-g_{-31}0-g_{-27}00-g_{-23}00-g_{-18}000-g_{-13}000-2g_{-7}g_{-1}0002h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}000g_{2}-g_{6}000g_{9}0-g_{12}00g_{15}00-g_{17}00g_{21}000-g_{22}01/2g_{26}-1/2g_{26}000-1/2g_{26}g_{26}-g_{30}00000g_{31}00000g_{35}0000g_{39}0000g_{42}000g_{45}0002g_{47}00g_{48}000000000000000
(0, 0, 1, 1, 1, 1, 1)e_{3}+e_{7}g_{27}000g_{-30}g_{-26}0g_{-22}00g_{-17}000g_{-12}0g_{-8}0g_{-6}g_{-2}0002h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}000g_{3}-2g_{7}000g_{10}0-g_{13}00g_{16}00-g_{18}00g_{22}000-g_{23}0001/2g_{27}-1/2g_{27}001/2g_{27}-g_{27}0-g_{31}000-g_{32}0-g_{34}000-g_{36}0000-g_{40}0000-2g_{43}000-g_{45}000-g_{46}0000000000000000000
(0, 0, 0, 1, 1, 2, 1)e_{4}+e_{6}g_{28}00000g_{-25}0g_{-21}0g_{-16}0g_{-14}g_{-11}0g_{-9}0g_{-5}g_{-3}0002h_{7}+4h_{6}+2h_{5}+2h_{4}000g_{4}g_{6}000g_{11}0-g_{13}000g_{17}0-2g_{19}0000-g_{23}0-g_{24}000001/2g_{28}-1/2g_{28}1/2g_{28}-1/2g_{28}000-g_{32}0-g_{33}000-g_{35}0-2g_{37}00-g_{38}0-g_{40}0000-g_{42}000-g_{44}000000000000000000000000
(0, 0, 0, 0, 2, 2, 1)2e_{5}g_{29}00000000g_{-20}0g_{-15}00g_{-10}00g_{-4}000h_{7}+2h_{6}+2h_{5}0000g_{5}00000g_{12}00000-g_{18}000000-g_{24}0000000g_{29}-g_{29}00000-g_{33}00000-g_{36}0000-g_{39}0000-g_{41}00000000000000000000000000000
(1, 1, 1, 1, 1, 1, 0)e_{1}-e_{7}g_{30}-g_{-34}-g_{-31}0-g_{-27}0-g_{-23}00-g_{-18}00-g_{-13}000-2g_{-7}0002h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}000g_{1}-g_{6}00g_{8}0-g_{12}00g_{14}00-g_{17}0g_{20}000-g_{22}0g_{25}0000-g_{26}-1/2g_{30}0000-1/2g_{30}g_{30}000000g_{34}00000g_{38}0000g_{41}0000g_{44}000g_{46}000g_{48}002g_{49}000000000000000
(0, 1, 1, 1, 1, 1, 1)e_{2}+e_{7}g_{31}0g_{-30}g_{-26}0g_{-22}00g_{-17}00g_{-12}000g_{-6}g_{-1}002h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}000g_{2}-2g_{7}00g_{9}0-g_{13}00g_{15}00-g_{18}0g_{21}000-g_{23}0g_{26}0000-g_{27}01/2g_{31}-1/2g_{31}0001/2g_{31}-g_{31}-g_{34}0000-g_{35}00000-g_{39}0000-g_{42}0000-g_{45}000-2g_{47}000-g_{48}0000000000000000000
(0, 0, 1, 1, 1, 2, 1)e_{3}+e_{6}g_{32}000g_{-25}g_{-21}0g_{-16}00g_{-11}0g_{-8}0g_{-5}g_{-2}002h_{7}+4h_{6}+2h_{5}+2h_{4}+2h_{3}000g_{3}g_{6}00g_{10}0-g_{13}00g_{16}00-2g_{19}00g_{22}00-g_{24}000-g_{27}00-g_{28}0001/2g_{32}-1/2g_{32}01/2g_{32}-1/2g_{32}00-g_{35}00-g_{36}00-g_{38}00-g_{40}0000-2g_{43}0000-g_{45}000-g_{46}000000000000000000000000
(0, 0, 0, 1, 2, 2, 1)e_{4}+e_{5}g_{33}00000g_{-20}0g_{-15}g_{-14}g_{-10}g_{-9}0g_{-4}g_{-3}002h_{7}+4h_{6}+4h_{5}+2h_{4}000g_{4}g_{5}000g_{11}g_{12}0000g_{17}-g_{18}0000-g_{23}-g_{24}00000-g_{28}-2g_{29}000001/2g_{33}0-1/2g_{33}0000-g_{36}-2g_{37}0000-g_{39}-g_{40}000-g_{41}-g_{42}0000-g_{44}00000000000000000000000000000
(1, 1, 1, 1, 1, 1, 1)e_{1}+e_{7}g_{34}g_{-30}g_{-26}0g_{-22}0g_{-17}00g_{-12}00g_{-6}0002h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}00g_{1}-2g_{7}00g_{8}0-g_{13}0g_{14}00-g_{18}0g_{20}000-g_{23}g_{25}0000-g_{27}g_{30}00000-g_{31}-1/2g_{34}00001/2g_{34}-g_{34}00000-g_{38}00000-g_{41}0000-g_{44}0000-g_{46}000-g_{48}000-2g_{49}0000000000000000000
(0, 1, 1, 1, 1, 2, 1)e_{2}+e_{6}g_{35}0g_{-25}g_{-21}0g_{-16}00g_{-11}00g_{-5}g_{-1}002h_{7}+4h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}00g_{2}g_{6}00g_{9}0-g_{13}0g_{15}00-2g_{19}0g_{21}000-g_{24}0g_{26}000-g_{28}00-g_{31}000-g_{32}01/2g_{35}-1/2g_{35}001/2g_{35}-1/2g_{35}0-g_{38}000-g_{39}00000-g_{42}0000-g_{45}0000-2g_{47}000-g_{48}000000000000000000000000
(0, 0, 1, 1, 2, 2, 1)e_{3}+e_{5}g_{36}000g_{-20}g_{-15}0g_{-10}0g_{-8}g_{-4}g_{-2}002h_{7}+4h_{6}+4h_{5}+2h_{4}+2h_{3}00g_{3}g_{5}00g_{10}0g_{12}00g_{16}0-g_{18}000g_{22}0-g_{24}000-g_{27}0-2g_{29}0000-g_{32}0-g_{33}0001/2g_{36}-1/2g_{36}1/2g_{36}-1/2g_{36}000-g_{39}0-g_{40}000-g_{41}0-2g_{43}0000-g_{45}0000-g_{46}00000000000000000000000000000
(0, 0, 0, 2, 2, 2, 1)2e_{4}g_{37}00000g_{-14}0g_{-9}0g_{-3}00h_{7}+2h_{6}+2h_{5}+2h_{4}000g_{4}0000g_{11}0000g_{17}00000-g_{23}00000-g_{28}000000-g_{33}00000g_{37}-g_{37}00000-g_{40}00000-g_{42}0000-g_{44}00000000000000000000000000000000000
(1, 1, 1, 1, 1, 2, 1)e_{1}+e_{6}g_{38}g_{-25}g_{-21}0g_{-16}0g_{-11}00g_{-5}002h_{7}+4h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}00g_{1}g_{6}0g_{8}0-g_{13}0g_{14}00-2g_{19}g_{20}000-g_{24}g_{25}0000-g_{28}g_{30}0000-g_{32}0-g_{34}0000-g_{35}-1/2g_{38}0001/2g_{38}-1/2g_{38}00000-g_{41}00000-g_{44}0000-g_{46}0000-g_{48}000-2g_{49}000000000000000000000000
(0, 1, 1, 1, 2, 2, 1)e_{2}+e_{5}g_{39}0g_{-20}g_{-15}0g_{-10}00g_{-4}g_{-1}02h_{7}+4h_{6}+4h_{5}+2h_{4}+2h_{3}+2h_{2}00g_{2}g_{5}0g_{9}0g_{12}0g_{15}00-g_{18}0g_{21}00-g_{24}00g_{26}00-2g_{29}00-g_{31}00-g_{33}000-g_{35}00-g_{36}01/2g_{39}-1/2g_{39}01/2g_{39}-1/2g_{39}00-g_{41}00-g_{42}00000-g_{45}0000-2g_{47}0000-g_{48}00000000000000000000000000000
(0, 0, 1, 2, 2, 2, 1)e_{3}+e_{4}g_{40}000g_{-14}g_{-9}g_{-8}g_{-3}g_{-2}02h_{7}+4h_{6}+4h_{5}+4h_{4}+2h_{3}00g_{3}g_{4}00g_{10}g_{11}000g_{16}g_{17}000g_{22}-g_{23}0000-g_{27}-g_{28}0000-g_{32}-g_{33}00000-g_{36}-2g_{37}0001/2g_{40}0-1/2g_{40}0000-g_{42}-2g_{43}0000-g_{44}-g_{45}0000-g_{46}00000000000000000000000000000000000
(1, 1, 1, 1, 2, 2, 1)e_{1}+e_{5}g_{41}g_{-20}g_{-15}0g_{-10}0g_{-4}002h_{7}+4h_{6}+4h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}0g_{1}g_{5}0g_{8}0g_{12}g_{14}00-g_{18}g_{20}000-g_{24}g_{25}000-2g_{29}0g_{30}000-g_{33}0-g_{34}000-g_{36}00-g_{38}000-g_{39}-1/2g_{41}001/2g_{41}-1/2g_{41}00000-g_{44}00000-g_{46}0000-g_{48}0000-2g_{49}00000000000000000000000000000
(0, 1, 1, 2, 2, 2, 1)e_{2}+e_{4}g_{42}0g_{-14}g_{-9}0g_{-3}g_{-1}02h_{7}+4h_{6}+4h_{5}+4h_{4}+2h_{3}+2h_{2}0g_{2}g_{4}0g_{9}0g_{11}0g_{15}0g_{17}00g_{21}0-g_{23}00g_{26}0-g_{28}000-g_{31}0-g_{33}000-g_{35}0-2g_{37}0000-g_{39}0-g_{40}01/2g_{42}-1/2g_{42}1/2g_{42}-1/2g_{42}000-g_{44}0-g_{45}00000-2g_{47}0000-g_{48}00000000000000000000000000000000000
(0, 0, 2, 2, 2, 2, 1)2e_{3}g_{43}000g_{-8}g_{-2}0h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}00g_{3}000g_{10}000g_{16}0000g_{22}0000-g_{27}00000-g_{32}00000-g_{36}000000-g_{40}000g_{43}-g_{43}00000-g_{45}00000-g_{46}00000000000000000000000000000000000000000
(1, 1, 1, 2, 2, 2, 1)e_{1}+e_{4}g_{44}g_{-14}g_{-9}0g_{-3}02h_{7}+4h_{6}+4h_{5}+4h_{4}+2h_{3}+2h_{2}+2h_{1}0g_{1}g_{4}g_{8}0g_{11}g_{14}00g_{17}g_{20}00-g_{23}0g_{25}00-g_{28}0g_{30}00-g_{33}00-g_{34}00-2g_{37}00-g_{38}00-g_{40}000-g_{41}00-g_{42}-1/2g_{44}01/2g_{44}-1/2g_{44}00000-g_{46}00000-g_{48}0000-2g_{49}00000000000000000000000000000000000
(0, 1, 2, 2, 2, 2, 1)e_{2}+e_{3}g_{45}0g_{-8}g_{-2}g_{-1}2h_{7}+4h_{6}+4h_{5}+4h_{4}+4h_{3}+2h_{2}0g_{2}g_{3}0g_{9}g_{10}00g_{15}g_{16}00g_{21}g_{22}000g_{26}-g_{27}000-g_{31}-g_{32}0000-g_{35}-g_{36}0000-g_{39}-g_{40}00000-g_{42}-2g_{43}01/2g_{45}0-1/2g_{45}0000-g_{46}-2g_{47}00000-g_{48}00000000000000000000000000000000000000000
(1, 1, 2, 2, 2, 2, 1)e_{1}+e_{3}g_{46}g_{-8}g_{-2}02h_{7}+4h_{6}+4h_{5}+4h_{4}+4h_{3}+2h_{2}+2h_{1}g_{1}g_{3}g_{8}0g_{10}g_{14}0g_{16}0g_{20}0g_{22}0g_{25}0-g_{27}00g_{30}0-g_{32}00-g_{34}0-g_{36}000-g_{38}0-g_{40}000-g_{41}0-2g_{43}0000-g_{44}0-g_{45}-1/2g_{46}1/2g_{46}-1/2g_{46}00000-g_{48}00000-2g_{49}00000000000000000000000000000000000000000
(0, 2, 2, 2, 2, 2, 1)2e_{2}g_{47}0g_{-1}h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}0g_{2}00g_{9}00g_{15}000g_{21}000g_{26}0000-g_{31}0000-g_{35}00000-g_{39}00000-g_{42}000000-g_{45}0g_{47}-g_{47}00000-g_{48}000000000000000000000000000000000000000000000000
(1, 2, 2, 2, 2, 2, 1)e_{1}+e_{2}g_{48}g_{-1}2h_{7}+4h_{6}+4h_{5}+4h_{4}+4h_{3}+4h_{2}+2h_{1}g_{1}g_{2}g_{8}g_{9}0g_{14}g_{15}0g_{20}g_{21}00g_{25}g_{26}00g_{30}-g_{31}000-g_{34}-g_{35}000-g_{38}-g_{39}0000-g_{41}-g_{42}0000-g_{44}-g_{45}00000-g_{46}-2g_{47}0-1/2g_{48}00000-2g_{49}000000000000000000000000000000000000000000000000
(2, 2, 2, 2, 2, 2, 1)2e_{1}g_{49}h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}g_{1}0g_{8}0g_{14}00g_{20}00g_{25}000g_{30}000-g_{34}0000-g_{38}0000-g_{41}00000-g_{44}00000-g_{46}000000-g_{48}-g_{49}0000000000000000000000000000000000000000000000000000000
We define the symmetric Cartan matrix
by requesting that the entry in the i-th row and j-th column
be the scalar product of the i^th and j^th roots. The symmetric Cartan matrix is:
\(\displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0 & 0 & 0 & 0\\ -1/2 & 1 & -1/2 & 0 & 0 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0 & 0 & 0\\ 0 & 0 & -1/2 & 1 & -1/2 & 0 & 0\\ 0 & 0 & 0 & -1/2 & 1 & -1/2 & 0\\ 0 & 0 & 0 & 0 & -1/2 & 1 & -1\\ 0 & 0 & 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}\)
Let the (i, j)^{th} entry of the symmetric Cartan matrix be a_{ij}.
Then we define the co-symmetric Cartan matrix as the matrix whose (i, j)^{th} entry equals 4*a_{ij}/(a_{ii}*a_{jj}). In other words, the co-symmetric Cartan matrix is the symmetric Cartan matrix of the dual root system. The co-symmetric Cartan matrix equals:
\(\displaystyle \begin{pmatrix}4 & -2 & 0 & 0 & 0 & 0 & 0\\ -2 & 4 & -2 & 0 & 0 & 0 & 0\\ 0 & -2 & 4 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 4 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & 4 & -2 & 0\\ 0 & 0 & 0 & 0 & -2 & 4 & -2\\ 0 & 0 & 0 & 0 & 0 & -2 & 2\\ \end{pmatrix}\)
The determinant of the symmetric Cartan matrix is: 1/32
Half sum of positive roots: (7, 13, 18, 22, 25, 27, 14)= \(\displaystyle 7\varepsilon_{1}+6\varepsilon_{2}+5\varepsilon_{3}+4\varepsilon_{4}+3\varepsilon_{5}+2\varepsilon_{6}+\varepsilon_{7}\)
The fundamental weights (the j^th fundamental weight has scalar product 1
with the j^th simple root times 2 divided by the root length squared,
and 0 with the remaining simple roots):
(1, 1, 1, 1, 1, 1, 1/2) = \(\displaystyle \varepsilon_{1}\)
(1, 2, 2, 2, 2, 2, 1) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}\)
(1, 2, 3, 3, 3, 3, 3/2) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\)
(1, 2, 3, 4, 4, 4, 2) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\)
(1, 2, 3, 4, 5, 5, 5/2) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\)
(1, 2, 3, 4, 5, 6, 3) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}\)
(1, 2, 3, 4, 5, 6, 7/2) = \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}\)

Below is the simple basis realized in epsilon coordinates. Please note that the epsilon coordinate realizations do not have long roots of length of 2 in types G and C. This means that gramm matrix (w.r.t. the standard scalar product) of the epsilon coordinate realizations in types G and C does not equal the corresponding symmetric Cartan matrix.
(1, 0, 0, 0, 0, 0, 0) = \(\displaystyle \varepsilon_{1}-\varepsilon_{2}\)
(0, 1, 0, 0, 0, 0, 0) = \(\displaystyle \varepsilon_{2}-\varepsilon_{3}\)
(0, 0, 1, 0, 0, 0, 0) = \(\displaystyle \varepsilon_{3}-\varepsilon_{4}\)
(0, 0, 0, 1, 0, 0, 0) = \(\displaystyle \varepsilon_{4}-\varepsilon_{5}\)
(0, 0, 0, 0, 1, 0, 0) = \(\displaystyle \varepsilon_{5}-\varepsilon_{6}\)
(0, 0, 0, 0, 0, 1, 0) = \(\displaystyle \varepsilon_{6}-\varepsilon_{7}\)
(0, 0, 0, 0, 0, 0, 1) = \(\displaystyle 2\varepsilon_{7}\)